Structural, Optical and Magnetic Properties of alpha-Fe2O3-SiO2 and Dy2O3-SiO2 Composites Produced by a Facile Method

Kendir E., Tekgul A., KÜÇÜK İ., Yaltkaya S.

JOURNAL OF ELECTRONIC MATERIALS, vol.49, no.1, pp.798-806, 2020 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 49 Issue: 1
  • Publication Date: 2020
  • Doi Number: 10.1007/s11664-019-07718-1
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Applied Science & Technology Source, Chemical Abstracts Core, Chimica, Compendex, Computer & Applied Sciences, INSPEC
  • Page Numbers: pp.798-806
  • Bursa Uludag University Affiliated: Yes


We prepared SiO2, Fe2O3-SiO2, and Dy2O3-SiO2 composites by an enhanced method and reported the result of their structural, optical and magnetic properties. In the x-ray diffraction results of the Fe2O3-SiO2, Fe2O3 and the SiO2 it is evident that these composites are crystallized in rhombohedral and trigonal structures, respectively. In the Dy2O3-SiO2 composite, SiO2 transforms into a trigonal structure with the addition of Dy. The absorption bands belong to Fe2O3, and Dy2O3 were obtained using the Fourier transform infrared spectra. In ultraviolet-visible spectra, the photocatalytic properties of Fe2O3-SiO2 and Dy2O3-SiO2 were determined as a function of time at room temperature. Maximum transmittance change at 800 nm was 75% and 40% for composites Fe2O3-SiO2, and Dy2O3-SiO2, respectively. The photocatalytic property of Dy2O3-SiO2 composite increases gradually from short to long in the wavelength region where it exhibits a maximum value in the visible region. In magnetic measurements, a weak ferromagnetic behavior was observed in the Fe2O3-SiO2, while Dy2O3-SiO2 exhibited paramagnetic behavior as expected. The saturation and coercivity values for Fe2O3-SiO2 were found to be 0.15 Am-2 kg(-1) and 40 mT, respectively.