Efficiently two-stage synthesis and characterization of CuSe/Polypyrrole composite thin films


Firat E., Peksoz A.

JOURNAL OF ALLOYS AND COMPOUNDS, cilt.727, ss.177-184, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 727
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1016/j.jallcom.2017.08.095
  • Dergi Adı: JOURNAL OF ALLOYS AND COMPOUNDS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.177-184
  • Anahtar Kelimeler: Conductive polymer, Metal chalcogenide, Polypyrrole, CuSe, Electrodeposition, ELECTROCHEMICAL POLYMERIZATION, COPPER CONCENTRATION, POLYPYRROLE, ELECTRODEPOSITION, GROWTH, MICROSTRUCTURE, NANOPARTICLES, PERFORMANCE, PPY
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

A novel CuSe/PPy composite thin film was fabricated easily via electrodeposition method on ITO substrate in two stages. In order to determine deposition potentials, the electrochemical response of Cu and Se elements, and monomer were analyzed by cyclic voltammetry, and then chronoamperometry technique was used to synthesis of the conductive metal/polymer chalcogenide films. The morphology, electrical and optical properties of the films are presented in detail. SEM studies indicate that the Cu and Se nanoparticles are uniformly coated on ITO surface together with PPy. EDX analyses show that Cu and Se components are successfully electrodeposited into PPy polymer matrix. FTIR studies also confirm that PPy is synthesized and the CuSe nanoparticles are successfully loaded into PPy. The optical energy band gap (E-g) of the PPy thin films decreases from 1.78 to 1.44 eV with the addition of CuSe nanoparticles. Halleffect measurements reveal that both films exhibit semiconducting behavior, and the addition of CuSe into the PPy matrix plays an important role in the enhancement of electrical properties. The results show that the produced CuSe/PPy nanocomposite film can be considered a promising material for solar cell applications and the two stage synthesis method used for this composite film may be applied to other metal/polymer chalcogenides due to the low-cost, large-scale and easy fabrication. (C) 2017 Elsevier B.V. All rights reserved.