Molecular diversity of Leuconostoc mesenteroides and Leuconostoc citreum isolated from traditional French cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing and 16S rDNA fragment amplification


Cibik R. , Lepage E., Tailliez P.

SYSTEMATIC AND APPLIED MICROBIOLOGY, vol.23, no.2, pp.267-278, 2000 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 23 Issue: 2
  • Publication Date: 2000
  • Doi Number: 10.1016/s0723-2020(00)80014-4
  • Title of Journal : SYSTEMATIC AND APPLIED MICROBIOLOGY
  • Page Numbers: pp.267-278

Abstract

For a long time, the identification of the Leuconostoc species has been limited by a lack of accurate biochemical and physiological tests. Here, we use a combination of RAPD, 16S rDNA sequencing, and 16S rDNA fragment amplification with specific primers to classify different leuconostocs at the species and strain level. We analysed the molecular diversity of a collection of 221 strains mainly isolated from traditional French cheeses. The majority of the strains were classified as Leuconostoc mesenteroides (83.7%) or Leuconostoc citreum (14%) using molecular techniques. Despite their presence in French cheeses, the role of L. citreum in traditional technologies has not been determined, probably because of the lack of strain identification criteria. Only one strain of Leuconostoc lactis and Leuconostoc fallax were identified in this collection, and no Weissella paramesenteroides strain was found. However, dextran negative variants of L. mesenteroides, phenotypically misclassified as W. paramesenteroides were present. The molecular techniques used did not allow us to separate strains of the three L. mesenteroides subspecies (mesenteroides, dextranicum and cremoris). In accordance with previously published results, our findings suggest that these subspecies may be classified as biovars. Correlation found between phenotypes dextranicum and mesenteroides of L. mesenteroides and cheese technology characteristics suggests that certain strains may be better adapted to particular technological environments.