Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation with ambient air concentrations


Sari M. F. , Esen F., Taşdemir Y.

ATMOSPHERIC ENVIRONMENT, vol.244, 2021 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 244
  • Publication Date: 2021
  • Doi Number: 10.1016/j.atmosenv.2020.117903
  • Journal Name: ATMOSPHERIC ENVIRONMENT
  • Journal Indexes: Science Citation Index Expanded, Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Computer & Applied Sciences, EMBASE, Environment Index, Geobase, Greenfile, INSPEC, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Keywords: Biomonitoring, Pollen/air partitioning, POPs, PCBs, Sources identification, POLYCYCLIC AROMATIC-HYDROCARBONS, PERSISTENT ORGANIC POLLUTANTS, SOIL EXCHANGE, ATMOSPHERIC CONCENTRATIONS, ORGANOCHLORINE PESTICIDES, SEASONAL-VARIATIONS, PASSIVE SAMPLERS, TEMPORAL-CHANGES, SURFACE-WATER, URBAN AIR

Abstract

Both quantitative and qualitative evaluation of pollutants can be achieved by biomonitoring, enabling the determination of persistent organic pollutants (POPs) with a natural substance. Similarly, passive air samplers (PASs) are among the commonly used methods for the determination of atmospheric POPs. However, in the literature, there are few studies in which both methods (Biomonitoring and PASs) are evaluated together. This study aims to determine the relationship between concentration values and sources of polychlorinated biphenyls (PCBs) measured by PASs and biomarkers (honeybee, honey, and pollen). The total concentrations of 50 PCB congeners (Sigma(50)PCBs) in PASs (n = 10) were 2259.63 +/- 647.18 pg m(3) for the urban area and 2685.65 +/- 708.45 pg m(3) for the semi-urban area. Sigma(50)PCBs in the honeybee (n = 10), honey (n = 7), and pollen (n = 10) samples were 114.44 +/- 20.36, 104.89 +/- 31.48 and 65.89 +/- 13.54 ng g(-1) dry weight (dw) for the urban sampling area, respectively, and 119.41 +/- 45.13, 112.75 +/- 21.57 and 46.52 +/- 8.85 ng g(-1) dw for the semi-urban sampling area, respectively. Similar homologous group distributions between biomarkers and PASs were obtained. The plant/air partitioning coefficient (K-PA) was used to determine the exchange between pollen samples and PASs. The results indicated that high-molecular-weight PCBs moved from air to pollen media (deposition) and low-molecular -weight PCB congeners passed from pollen media to air (volatilization) in both sampling areas.