Management of water-based paint sludge originating from the automotive industry via composting


UÇAROĞLU S., Gümrah B. G.

Journal of the Air and Waste Management Association, cilt.74, sa.4, ss.279-289, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 74 Sayı: 4
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1080/10962247.2024.2316821
  • Dergi Adı: Journal of the Air and Waste Management Association
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, Greenfile, INSPEC, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.279-289
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

Water-based paint sludge generated from the automotive industry is considered a hazardous waste due to its high carbon content and is challenging and costly to manage. This study investigates the management of water-based paint sludge through the composting process, considering its high carbon content. The water-based paint sludge was composted in five separate reactors with the addition of treatment sludge from the same industry as co-substrate and inoculum, as well as sunflower stalks as a bulking agent. The ratio of paint sludge added to the compost mixtures varied between 40% and 80%. The highest temperature was achieved in reactors where industrial sludge was added, and the bulking agent was used at a rate of 20% (R3 and R5). The most efficient composting process was conducted with the addition of 60% water-based paint sludge, 20% treatment sludge, and 20% sunflower stalks (w/w, wet weight basis) (R3). During this process, reductions in organic matter content were observed due to organic matter mineralization, resulting in a decrease in moisture during the maturation phase and consequently reducing waste volumes. The composting process can be a useful tool in addressing the challenges of paint sludge management. Utilizing the composting process not only reduces waste volumes, thereby minimizing environmental impacts, but also offers a sustainable approach to paint sludge management by lowering disposal costs. It is also possible to achieve more effective results by composting paint sludge with different recipes and the use of various bulking agents. Implications: Composting is a method that can be used to achieve stabilization, reduce the quantity, and enable biodrying of water-based paint sludge generated from the automotive industry. In this study, different ratios of paint sludge were mixed with treatment sludge from the same industry as co-substrate and inoculum, while sunflower stalks were added as a bulking agent, and a composting process was conducted. The addition of industrial wastewater treatment sludge and sunflower stalks has increased the efficiency of the paint sludge composting process. In the management of paint sludge, the composting process has emerged as a significant alternative that reduces disposal costs and environmental impacts.