DEVELOPMENT OF MNO2/PANI/SWCNT NANOCOMPOSITE SUPERCAPACITOR ELECTRODE AND INVESTIGATION OF ELECTROCHEMICAL PERFORMANCE


Creative Commons License

Özada Ç., Ünal M., Özer H., Yazıcı M.

Uludağ University Journal of The Faculty of Engineering, cilt.28, sa.3, ss.887-904, 2023 (Hakemli Dergi)

Özet

In this study, a manganese dioxide (MnO2/polyaniline (PANI)/ single-walled carbon nanotube (SWCNT) nanocomposite electrode was prepared for pseudo-supercapacitors. To reduce the internal resistance of the electrode, increase the capacitance stability, and reduce the cost of single-walled carbon nanotubes, SWCNT was subjected to two-step acid etching. The purity of SWCNT was improved from ~95% to 99.98%. In addition, SWCNT was functionalized by this process. Thus, a nanocomposite was formed by coating PANI around SWCNT. MnO2/PANI/SWCNT were synthesized using the hydrothermal method. Morphological, chemical and thermal analyses of the synthesized nanocomposite structure were carried out. In addition, X-ray diffraction (XRD) was used to determine the crystal structure. Electrochemical analyses were performed using a three-electrode system in a 1 M KOH electrolyte solution. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements were performed. The capacitance of the nanocomposite electrode at 400 cycles was
314 mF/cm2, and the capacitance retention stability was calculated at 73.24%. The results showed that the capacitance stability was high, and the supercapacitor was sensitive to redox reactions.