A mechanistic approach to determine the relationship between film structure, electronic properties, and photocatalytic activity of ALD ZnO thin films on glass gibers


Creative Commons License

Arat A. B., Akyıldız H. İ.

JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, cilt.35, ss.1-13, 2024 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 35
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s10854-024-12843-7
  • Dergi Adı: JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Chemical Abstracts Core, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, MEDLINE, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-13
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

Atomic layer deposition (ALD), a high-conformality thin-film deposition technique, offers the opportunity to immobilize photocatalytic materials on high surface area substrates. Textile substrates are inexpensive, easily accessible materials with a fibrous nature, making them high surface area scaffolds for photocatalytic applications. This study applied ZnO thin-film coatings to fabric structures with different numbers of ALD cycles. The effect of coating thickness on the surface and electronic properties of the films and their photocatalytic properties were investigated. SEM, XRD, PL, and UV–Vis were used to examine the surface morphology, crystal structure, defects, and optical properties of the ZnO thin films. As the film thickness increased, the crystal sizes and the number of defects in the structure increased. Contact angle and Hall Effect measurements revealed that these structural defects are present on the surface of the films. Optimum wettability, mobility, and photocatalytic efficiency values were observed in the 15-nm coated samples, resulting in the highest photocatalytic activity and a turning point.