A Hybrid LSTM Approach for Irrigation Scheduling in Maize Crop


Creative Commons License

Dolaptsis K., Pantazi X. E., Paraskevas C., ARSLAN S., TEKİN Y., Bantchina B. B., ...Daha Fazla

AGRICULTURE-BASEL, cilt.14, sa.2, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 2
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/agriculture14020210
  • Dergi Adı: AGRICULTURE-BASEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

Irrigation plays a crucial role in maize cultivation, as watering is essential for optimizing crop yield and quality, particularly given maize's sensitivity to soil moisture variations. In the current study, a hybrid Long Short-Term Memory (LSTM) approach is presented aiming to predict irrigation scheduling in maize fields in Bursa, Turkey. A critical aspect of the study was the use of the Aquacrop 7.0 model to simulate soil moisture content (MC) data due to data limitations in the investigated fields. This simulation model, developed by the Food and Agriculture Organization (FAO), helped overcome gaps in soil sensor data, enhancing the LSTM model's predictions. The LSTM model was trained and tuned using a combination of soil, weather, and satellite-based plant vegetation data in order to predict soil moisture content (MC) reductions. The study's results indicated that the LSTM model, supported by Aquacrop 7.0 simulations, was effective in predicting MC reduction across various time phases of the maize growing season, attaining R2 values ranging from 0.8163 to 0.9181 for Field 1 and from 0.7602 to 0.8417 for Field 2, demonstrating the potential of this approach for precise and efficient agricultural irrigation practices.