Shock, vol.24, no.3, pp.288-293, 2005 (SCI-Expanded)
This study in dogs was performed to assess circulating choline status during endotoxemia and to determine whether choline administration can protect dogs from endotoxin-induced tissue injuries. Baseline serum-free and phospholipid-bound choline concentrations were 19.2 ± 0.6 μmol/L and 3700 ± 70 μmol/L, respectively. After intravenous endotoxin infusion, serum-free choline concentrations decreased by 14% to 49% (P < 0.05-0.001) at 2 to 6 h after 0.02 mg/kg endotoxin, and increased by 23% to 98% (P < 0.05-0.001) at 1 to 48 h after 1 mg/kg endotoxin. Serum phospholipid-bound choline concentrations increased by 19% to 27% (P < 0.05) at 12 to 24 h or by 18% to 53% (P < 0.05-0.001) at 1 to 48 h after 0.02 or 1 mg/kg endotoxin, respectively. The changes in serum-free and -bound choline levels in response to endotoxin were accompanied by dose- and time-related elevations in serum cortisol and biochemical markers for tissue injury and/or organ dysfunction. Intravenous administration of choline (20 mg/kg) 5 min before, and 4 and 8 h after endotoxin (1 mg/kg) attenuated endotoxin-induced elevations in serum alanine aminotransferase (P < 0.05-0.001), aspartate aminotransferase (P < 0.05-0.001), γ-glutamyl transferase (P < 0.05-0.001), alkaline phosphatase (P < 0.05-0.001), lactate dehydrogenase (P < 0.05-0.001), myocardial creatine kinase (P < 0.001), urea (P < 0.05-0.01), creatinine (P < 0.05), uric acid (P < 0.01-0.001), and tissue necrosis factor-α (P < 0.001). Choline also attenuated alanine aminotransferase (P < 0.05-0.01), alkaline phosphatase (P < 0.05-0.01), lactate dehydrogenase (P < 0.05-0.01), creatine kinase (P < 0.05-0.001), myocardial creatine kinase (P < 0.05-0.001), and uric acid (P < 0.05-0.01), but failed to alter the serum urea, creatinine, aspartate aminotransferase, and α-glutamyl transferase responses to 0.02 mg/kg endotoxin. These data show that choline status is altered during endotoxemia and that choline administration diminishes endotoxin-induced tissue injury. Copyright © 2005 by the Shock Society.