Classification of Normal Subgroups of Hecke Group H6 in Terms of Parabolic Class Number


Yurttas A., DEMİRCİ M., CANGÜL İ. N.

International Conference on Numerical Analysis and Applied Mathematics (ICNAAM), Halkidiki, Yunanistan, 19 - 25 Eylül 2011, cilt.1389 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 1389
  • Doi Numarası: 10.1063/1.3636729
  • Basıldığı Şehir: Halkidiki
  • Basıldığı Ülke: Yunanistan
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

In [3], Greenberg showed that n <= 6t(3) so that mu - nt <= 6t(4) for a normal subgroup N of level n and index mu having t parabolic classes in the modular group Gamma. Accola, [1], improved these to n <= 6t(2) always and n <= t(2) if Gamma/N is not abelian. Newman, [5], obtained another generalisation of these results. Hecke groups are generalisations of the modular group. We particularly deal with one of the most important cases, q = 6.