Exact Solutions of Nonlinear Evolution Equations by Using Modified Simple Equation Method


BEKİR A., AKBULUT A., KAPLAN YALÇIN M.

International Journal of Nonlinear Science, vol.19, pp.159-164, 2015 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 19
  • Publication Date: 2015
  • Doi Number: 10.1016/j.camwa.2014.12.011
  • Journal Name: International Journal of Nonlinear Science
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED)
  • Page Numbers: pp.159-164
  • Keywords: Modified simple equation method, Nonlinear evolution equations, Exact solutions, Solitary wave solutions, KADOMTSEV-PETVIASHVILI EQUATION, CALOGERO-BOGOYAVLENSKII-SCHIFF, PARTIAL-DIFFERENTIAL-EQUATIONS, POWER-LAW NONLINEARITY, SOLITON-SOLUTIONS, WAVE-EQUATIONS, CONSERVATION-LAWS, PERTURBATION, KINKS
  • Bursa Uludag University Affiliated: Yes

Abstract

In this paper, the modified simple equation method (MSEM) is applied to construct exact solutions of the generalized (2 + 1)-dimensional nonlinear evolution equations (NLEEs) involving parameters via the (2 + 1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation, the (2 + 1)-dimensional breaking soliton equation and the (2 + 1)-dimensional Bogoyavlenskii's breaking soliton equation. The solitary wave solutions are derived from the exact solutions by assigning special values of the parameters. (C) 2014 Elsevier Ltd. All rights reserved.