Hypertonic saline dextran alleviates hepatic injury in hypovolemic rats undergoing porta hepatis occlusion.


Ozguc H., Tokyay R., Kahveci N., Serdar Z., Gur E.

Shock (Augusta, Ga.), vol.19, no.4, pp.383-7, 2003 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 19 Issue: 4
  • Publication Date: 2003
  • Doi Number: 10.1097/00024382-200304000-00015
  • Journal Name: Shock (Augusta, Ga.)
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.383-7
  • Bursa Uludag University Affiliated: Yes

Abstract

To monitor the ischemic and/or reperfusion injury after porta hepatis occlusion (Pringle maneuver) in livers subjected to hypotension, serum alanine amino transferase (ALT), liver malondialdehyde, (MIDA), and liver glutathione (GSH) levels were measured. MDA is a by-product of oxidant-induced lipid peroxidation, and GSH is an endogenous antioxidant. The effects of lactated Ringer's (LR) and hypertonic saline (7.5%)/Dextran (6%; HSD) resuscitation on liver injury, if any, was investigated. Rats in sham (S, n = 8) and five other groups (n = 8) underwent femoral artery and vein catheterization and laparotomy. The hemorrhage and ischemia (HI) group was bled 30% of their blood volume and had their porta hepatis occluded for 30 min. The HI, LR, and HSD groups underwent both hemorrhage and occlusion. Thirty minutes after hemorrhage, the LR and HSD groups received either LR (equivalent to three times the shed blood) or HSD (10 mL/kg) resuscitation over 30 min. Both LR and HSD resuscitation lowered the increased ALT and liver tissue MDA seen in the HI group. ALT was decreased from 348 +/- 93 IU/L in the HI group to 200 +/- 98 IU/L in the LR and 139 +/- 74 IU/L in the HSD groups. Liver tissue MDA was 353 +/- 22 nmol/g/tissue in the HI group and LR decreased it to 261 +/- 17 nmol/g/tissue, whereas HSD decreased it to 273 +/- 20 nmol/g/tissue. The decrease in ALT and the increase in liver GSH were more pronounced with HSD resuscitation (P < 0.05). HSD seems to be more effective than LR in decreasing the liver tissue damage produced by total hepatic inflow occlusion under hypovolemic conditions.