Prediction of the maximum-efficiency cyclone length for a cyclone with a tangential entry


Surmen A., Avci A., KARAMANGİL M. İ.

POWDER TECHNOLOGY, cilt.207, ss.1-8, 2011 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 207
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1016/j.powtec.2010.10.002
  • Dergi Adı: POWDER TECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1-8
  • Anahtar Kelimeler: Cyclone separator, Maximum-efficiency cyclone, SEPARATION EFFICIENCY, CFB CYCLONES, GAS, FLOW, TEMPERATURE, FLUID
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found to be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations. (C) 2010 Elsevier B.V. All rights reserved.