Nonlinear Schrodinger equations with spatio-temporal dispersion in Kerr, parabolic, power and dual power law media: A novel extended Kudryashov's algorithm and soliton solutions


Yildirim Y., ÇELİK N., YAŞAR E.

RESULTS IN PHYSICS, cilt.7, ss.3116-3123, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 7
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1016/j.rinp.2017.08.008
  • Dergi Adı: RESULTS IN PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.3116-3123
  • Anahtar Kelimeler: Solitons, Nonlinear Schrodinger equation with spatio-temporal dispersion, Extended Kudryashov's method, OPTICAL SOLITONS, NANO-FIBERS, PERTURBATION
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

In this study, we perform the extended Kudryashov method to nonlinear Schrdinger equation (NLSE) with spatio-temporal dispersion that arises in a propagation of light in nonlinear optical fibers, planar waveguides, Bose-Einstein condensate theory. Four types of nonlinearity - Kerr law, power law, parabolic law and dual-power law - are being considered for the model. By using this scheme, the topological, singular soliton and rational solutions are obtained. In addition, some graphical simulations of solutions are provided.