Efficiency of sample introduction into inductively coupled plasma by graphite furnace electrothermal vaporization

Kantor T., Gucer S.

SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, vol.54, no.5, pp.763-772, 1999 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 54 Issue: 5
  • Publication Date: 1999
  • Doi Number: 10.1016/s0584-8547(99)00026-9
  • Page Numbers: pp.763-772


A laboratory constructed graphite furnace electrothermal vaporizer (GF-ETV) was used for studying transport efficiencies. This device enables collection of the vaporization products that exit the central sampling hole of the horizontal graphite tube. For determination of the transport efficiency between the GF-ETV and the ICP-torch three methods were tested: (1) deposition of the aerosol particles and the vapour of certain elements by mixing the vaporization product with supersaturated steam and subsequent condensation (direct method); (2) dissolution of the deposited sample fraction from the interface components (indirect method); and (3) calculation from line intensities when applying GF-ETV and pneumatic nebulization sample introduction methods using mercury as a reference element. The latter, 'mercury reference method' required 100% transport efficiency for mercury with the ETV, which could be approximated with the use of argon as carrier gas (without halocarbon addition). With a 200 cm(3)/min flow rate of internal argon in the graphite tube, the transport efficiency was between 67 and 76% for medium volatility elements (Cu, Mn and Mg) and between 32 and 38% for volatile elements (Cd and Zn). By adding carbon tetrachloride vapour to the internal argon flow, the transport efficiency increased to 67-73% for the five elements studied. (C) 1999 Elsevier Science B.V. All rights reserved.