In silico CD4+T-cell multiepitope prediction and HLA distribution analysis for Marburg Virus-A strategy for vaccine designing


Dhasmana A., Dhasmana S., Alsulimani A., Kotnala S., Kashyap V. K., Haque S., ...Daha Fazla

JOURNAL OF KING SAUD UNIVERSITY SCIENCE, cilt.34, sa.2, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 34 Sayı: 2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.jksus.2021.101751
  • Dergi Adı: JOURNAL OF KING SAUD UNIVERSITY SCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, zbMATH, Directory of Open Access Journals
  • Anahtar Kelimeler: Marburg Virus, Peptide based vaccine, CD4+T Cell, Non-mutagenic, Antigenic, Non-toxic and High world population, coverage, T-CELL EPITOPES, HEMORRHAGIC-FEVER, EBOLA, PROTEINS, DISEASE, CLUE, CD4+
  • Bursa Uludağ Üniversitesi Adresli: Hayır

Özet

Marburg, a RNA virus (MRV), is responsible for causing hemorrhagic fever that affects humans and nonhuman primates. World Health Organization (WHO), National Institutes of Health (NIH) and Centre of Disease Control and Prevention (CDC) considered this as an extremely dangerous virus, thus categorised as risk group 4, category A priority pathogen and category "A" bioterrorism agent, respectively. Despite of all these alarming concerns, no prophylaxis arrangements are available against this virus till date. In fact, the construction of immunogenic vaccine candidates by traditional molecular immunology methods is time consuming and very expensive. Considering these concerns, herein, we have designed CD4 + T Cell multiepitopes against MRV using in silico approach. The pin-point criteria of the screening and selection of potential epitopes are, non-mutagenic, antigenic, large HLAs coverage, non-toxic and high world population coverage. This kind of methodology and investigations can precisely reduce the expenditure and valuable time for experimental planning in development of vaccines in laboratories. In current scenario, researchers are frequently using in silico approaches to speed up their vaccine-based lab studies. The computational studies are highly valuable for the screening of large epitope dataset into smaller one prior to in vitro and in vivo confirmatory analyses. CO 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).