The (p, q)-Chebyshev polynomial bounds of a general bi-univalent function class


Creative Commons License

Altınkaya Ş., Yalcin S.

BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, vol.26, no.2, pp.341-348, 2020 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 26 Issue: 2
  • Publication Date: 2020
  • Doi Number: 10.1007/s40590-019-00246-2
  • Journal Name: BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA
  • Journal Indexes: Emerging Sources Citation Index, Scopus, MathSciNet, zbMATH, DIALNET
  • Page Numbers: pp.341-348
  • Keywords: (p,q)-Chebyshev polynomials, Bi-univalent functions, Subordination, FIBONACCI, COEFFICIENT, SUBCLASSES

Abstract

In the present paper, we will define the bi-univalent function class S.,mu S ( p, q) related to the ( p, q)-Chebyshev polynomials. Then we will derive the ( p, q)-Chebyshev polynomial bounds for the initial coefficients and determine Fekete-Szego functional for f. S.,mu S ( p, q).