A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics


Kaplan M., Bekir A., Akbulut A.

NONLINEAR DYNAMICS, cilt.85, sa.4, ss.2843-2850, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 85 Sayı: 4
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1007/s11071-016-2867-1
  • Dergi Adı: NONLINEAR DYNAMICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2843-2850
  • Anahtar Kelimeler: Exact solutions, Generalized Kudryashov method, Symbolic computation, Calogero-Bogoyavlenskii-Schiff equation, Jaulent-Miodek hierarchy, TRAVELING-WAVE SOLUTIONS, CALOGERO-BOGOYAVLENSKII-SCHIFF, MULTIPLE-SOLITON SOLUTIONS, LAW NON LINEARITY, BURGERS EQUATION, F-EXPANSION, MODEL, (G'/G)-EXPANSION
  • Bursa Uludağ Üniversitesi Adresli: Hayır

Özet

Nonlinear evolution equations form the most fundamental theme in mathematical physics. The search for exact solutions of nonlinear equations has been of interest in recent years. In this paper, we obtain exact solutions of the nonlinear Jaulent-Miodek hierarchy and (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation by using the generalized Kudryashov method. All calculations in this study have been made and checked back with the aid of the Maple packet program.