Anomalous Evolution of the Near-Side Jet Peak Shape in Pb-Pb Collisions at root S-NN=2.76 TeV


Adam J., Adamova D., Aggarwal M. M., Rinella G. A., Agnello M., Agrawal N., ...Daha Fazla

PHYSICAL REVIEW LETTERS, cilt.119, sa.10, 2017 (SCI-Expanded) identifier identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 119 Sayı: 10
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1103/physrevlett.119.102301
  • Dergi Adı: PHYSICAL REVIEW LETTERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Bursa Uludağ Üniversitesi Adresli: Hayır

Özet

The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a p(T) region inaccessible by direct jet identification. In these measurements pseudorapidity (Delta(eta)) and azimuthal (Delta phi) differences are used to extract the shape of the near-side peak formed by particles associated with a higher p(T) trigger particle (1 < p(T,trig) < 8 GeV/c). A combined fit of the near-side peak and long-range correlations is applied to the data allowing the extraction of the centrality evolution of the peak shape in Pb-Pb collisions at root s(NN) = 2.76 TeV. A significant broadening of the peak in the Delta(eta) direction at low p(T) is found from peripheral to central collisions, which vanishes above 4 GeV/c, while in the Delta(phi) direction the peak is almost independent of centrality. For the 10% most central collisions and 1 < p(T,assoc) < 2 GeV/c, 1 < p(T,trig) < 3 GeV/c a novel feature is observed: a depletion develops around the center of the peak. The results are compared to pp collisions at the same center of mass energy and AMPT model simulations. The comparison to the investigated models suggests that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.