Development of a new generation panel radiator for the low inlet water temperatures


Thesis Type: Postgraduate

Institution Of The Thesis: Uludağ Üniversitesi, Turkey

Approval Date: 2013

Thesis Language: Turkish

Student: SUAT AYDIN

Supervisor: MUHSİN KILIÇ

Abstract:

In this study, three dimensional numerical analysis of temperature and air flow distribution in the panel radiators were performed by using Computational Fluid Dynamics (CFD) method. For this purpose, a three dimensional radiator surfaces were modeled by using the real dimensions of standard panel radiator. This analysis was made with a commercial program ANSYS using finite volume method. Numerical performance values were obtained and compared given catalogue values. We thought two different constructions which include panel side and convector side, were employed. We employed three different cases according to standard test conditions of thermal output of a steel panel radiator. In all three cases, the value of water inlet temperatures were set to 85.7°C, 74.9°C, 52.4°C and the value of entering mass-flow rates were set to 0.027719 kg/s, 0.027822 kg/s, 0.027972 kg/s, respectively. The reference air temperature was set to 20 °C. We employed five different cases according to standard test conditions of thermal output of a convector module. In all five cases, the value of panel surfaces temperatures were set to 80 °C, 70 °C, 60 °C, 50 °C and 40 °C respectively. The reference air temperature was set to 20 °C. For the panel radiator, the numerical calculations were performed under steady-state conditions. For the convector module, the numerical calculations were performed under transient conditions. We observed that, the results obtained from the numerical simulations were in good agreement with the experimental data available in the literature.